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2 2 A procedure is given for estimating the variance ratio crt/ox, of two models of a crystal structure where a~ and 
cr~l are the variances of the weighted (If,,I - IFcl ) distributions for models I and II, respectively, and IFol and 
~F,.I are the observed and calculated structure factors. The procedure provides a statistical test of the hypoth- 
esis that the above ratio is unity for a given pair of models and, thus, whether one of the models offers a 
significantly better description of the crystal structure. The method is applicable to crystallographic problems 
in which each of two or more structural models is expressed in terms of the same set of parameters. It has 
been applied to a number of atom-assignment problems, and the results are compared with those from 
Hamilton's R-factor ratio test. 

1. Introduction 

Hamilton's test on the R-factor ratio is well known to 
crystallographers as a means of determining the signi- 
ficance of a change in the R factor upon continued 
refinement of a crystal structure (Hamilton, 1964, 
1965). The R-factor ra t io , /~ ,  is equal to R~/R~, where 
R t and Rli  a r e  the residuals associated with models I 
and II of a given crystal structure. By convention, 
model II is the least-restrained model, i.e. RI >_ R~. 
Hamilton was able to derive the distribution of ~ by 
making the following assumptions of linearity: that the 
structure factors are linear in the parameters, and that 
the hypothesis under test is a (sharp) linear relation on 
the parameters. Under these two assumptions, models 
may be formulated in matrix notation as (1) and (2), 
respectively: 

F = Ax + ~ (1) 

Qx = z, (2) 

where F = (IFil o -- IFilc), IFil o and IFil c are the 
observed and calculated values of the ith structure 
factor, A = (c3[Fil/c3xj), x = (Axi), xj is the j t h  
parameter, and Ax i is the correction to be applied to the 
j t h  parameter. The vector E represents the collection of 
random, nonsystematic discrepancies between the 
structure-factor differences and the model values; ele- 
ments of a are assumed to have zero means. I A recent 
statistical analysis of structure-factor residuals casts 
doubt on this assumption (Vacca & Kennard, 1977).1 

In order to apply the R-ratio test, the 'dimension of 
the hypothesis' and degrees of freedom must be known. 
The dimension b may usually (but not always) be taken 
as the difference in the number of parameters refined 
for each of two structural models, and the (residual) 
degrees of freedom are the number of observations N 

minus the number of refined parameters m. An experi- 
mental R-ratio greater than "~t,,N-m,,~ ]obtained from 
the tables in Hamilton (1965)] means that one of the 
models is a better descriptor of the structure at signi- 
ficance level ~t. However, as Hamilton (1964, 1965) 
pointed out, the linearity asumptions (1) and (2) are 
almost never strictly satisfied in crystallographic 
problems. (Non-linearity introduces an uncertainty in 
estimating the effective number of degrees of freedom, 
which causes Hamilton's test to be inexact.) Accor- 
dingly, we have developed an alternative statistical test 
which is not founded on linearity conditions (1) and (2). 

Our procedure exploits the so-called 'jack-knife' 
technique from statistics (Tukey, 1958). As details, by 
necessity, are rather involved, we will now outline our 
approach to make apparent its inherent range of applic- 
ability in crystallography. 

The statistical parameter of interest is 72, the 
(unknown) true ratio of variances of the (suitably 
weighted) errors in the calculated structure factors for 
two physical models, I and II: 

f ~  o~/o~,. (3) 

Our objective is to test the null hypothesis of equal 
variances: 

H0: y 2 = I, (4) 

versus the alternative hypothesis: 

Ha: y2 > 1. (5) 

Rejecting H 0 in favour of H a indicates that model I 
agrees less with experiment than does model II. 

Our starting point is the (squared) R-factor ratio for 
the two competing models (Hamilton, 1964, 1965): 

. ~ 2  2 2 = R I / R t ,  ( 6 )  
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where R x > R u. We view .~2 as an estimator of the 
parameter ),2 based on a sample size of N, which is the 
number of observed reflections. Let . ~ 2  be the corre- 
sponding estimator based on a sample size of N - -  1, 
where the ith reflection has been deleted from the 
calculation of .B E. Using these we define N new 
estimators of .9~ 2 [called 'pseudo-values' by Tukey 
(1958)1: 

.~t=-- N . ~ 2 - -  ( N -  1) .~2r  (7) 

In crystallographic applications, where N is large, the 
pseudo-values are nearly normally distributed about 
their mean, with a known variance. This, after 
exploiting a variance-stabilizing log transformation, 
enables us to test the null hypothesis H o (4) versus the 
alternative hypothesis Ha (5). 

Central to our procedure is the distribution of the 
pseudo-values, .~2. This contrasts fundamentally with 
Hamilton's test, which is concerned with the distri- 
bution of .~2 itself. 

The number of reflections, N, plays the same role in 
our procedure as the number of 'degrees of freedom' 
does in Hamilton's test. However, there is nothing in 
our procedure comparable to Hamilton's 'dimension of 
the hypothesis'. Accordingly, crystallographic prob- 
lems which are amenable to treatment by the jack-knife 
method are those in which each o f  two or more 
s tructural  models can be described by the same set o f  
f ree ly  refined parameters  (if there are restrictions on 
any parameters the restrictions must be the same in 
each model). Of course, the values of the parameters 
will be different for each model. 

The problem of atom identification falls into this 
category. For example, consider the case of correctly 
identifying the C and N atoms of CN. Assume that the 
two atom locations are described by the parameters x l, 
y~, z~, B l and x 2, Y2, z2, B2" The structure factors, F~ and 
F~ ~, can be written for two models, one with the 
assignment CN, the other with the assignment NC: 

F~ = f c  e x p l - 2 r d ( h x l  + ky~ + lz,)l exp( -B l sin 2 0/22) 

+fN expl-2n/(hx2 + ky2 + lz2)l 

x exp( -B 2 sin 2 0/22) (8) 

Ft~ l = fN expl-2r t i (hx~ + ky  I + lz,)l exp(-B,  sin 2 0/22) 

+ f c  exp[-2zt i (hx2 + kY2 + lz2)] 

x exp( -B z sin 2 0/22), (9) 

where fc  and fN are the C and N form factors. In this 
simple case, the same eight parameters describe each 
structural model. Refinement of each model in the usual 
way will give two sets of (IFil o -- IFilc) values, and the 
variance ratio can be determined by the jack-knife test. 

2. Methodology 

Consider a set of N structure factors for each of two 
physical models, I and II. We are concerned with the 
quality of fit of the calculated to the observed structure 
factors, IFll c and IFil o, respectively, for each model. 
Define 

Ai=-- v/(Wi)(IFllo - IFtlc), (10) 

where w~ is a weight associated with a given obser- 
vation. These data are viewed as N observations 
derived from a population of dispersion (or variance) 
0 2 . The quantity of interest, therefore, is the unknown 
ratio of variances for the two models ),2 (3). 

One of the estimators of },2 is the square of the 
Hamilton R-factor ratio .~2 (6) where the R factor is 
given by 

Being the ratio of a sum of squared deviations, the 
squared R-factor ratio estimates 7 2, but is not 
distributed as a variance ratio, as R~ and R~! are not 
independently distributed as X 2 variates (Hamilton, 
1964). Hamilton has derived the distribution of the R- 
factor ratio, given the linearity assumptions cited in § 1. 

As a contrast, our approach ignores the question of 
the distribution of the R-factor ratio. We apply the 
jack-knife technique to the squared R-factor ratio and 
obtain N new estimates of the ratio. Following Tukey 
(1958) we treat these estimates as approximately 
independent (identically distributed) observations from 
which we construct a test on the ratio. 

.~72 is the estimate of the true variance ratio ), 2 based 
on all N reflections. Le t /~ ,2 ,  i = 1,..., N, denote the 
estimator of 72 obtained by deleting the ith reflection 
and estimating 72 from the remaining ( N - l )  
reflections: 

[~ (aJ)V~iw',lFkl~o ] 
.,~,2_ ___ [~, (AII)V ~ i  w''lFml2°] 

(12) 

where A is defined in (10). 
Form the N new estimators (pseudo-values) ~ 2  (7). - i  

The jack-knife point estimate (of ~,2) is the average of 
.~2_i:  

• ~-~ = Z ,~_i/N. (13) 
i 

The jack-knife technique is widely used to reduce the 
bias in estimators, as it exactly eliminates the 1/N term 
from any bias (Quenouille, 1949, 1956; Durbin, 1959; 
Miller, 1964; Arvesen & Schmitz, 1970; Miller, 
1974a,b). More important for our purposes, however, is 
that the average sum of squares of jack-knife estimators 
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is nearly N ( N - 1 )  times the variance of the mean 
(Tukey, 1958): 

V2=  "5-- ( ,~2_i - ,T- -~)2 /[N(N-- l ) l .  (14) 
i 

For the purposes of hypothesis testing, we make the 
following conjecture, originally due to Tukey (Miller, 
1964): the N individual estimators (7) are normally 
distributed about their mean, ,d2: 

~ 2  ~ N(,~2,  V2). (15) 

General problems in which Tukey's  conjecture is 
indeed valid are reviewed by Miller (1974a,b). 

On the application of the jack-knife to dispersion 
problems the log transformation is used as it tends to 
stabilize the variance and creates a distribution which is 
closer to the normal distribution (Miller, 1968; Arvesen 
& Schmitz, 1970; Hollander & Wolfe, 1973). With the 
log transformation our pseudo-values (7) and jack- 
knife point estimate (13) become (16) and (17), respec- 
tively: 

L/J_i -- Nln( .~ '2)  - ( N - -  1) ln(,Nz_i) (16) 

2,7= ~ 2/~_JN. (17) 

The variance of the mean is calculated as before: 

V ' 2 =  ~ ( y ~ _ i - ~ ) 2 / [ N ( N  - 1)]. (18) 
i 

Returning to the problem at hand, recall that the 
quantity of interest is the unknown variance ratio, y2 
(3). The appropriate null hypothesis is H 0 (4), which 
asserts equality of variances for model structures I and 
11, the latter that with the best (in a least-squares sense) 
set of parameters, X. The appropriate alternative 
hypothesis is H~ (5). 

Rejecting H o in favour of H~ indicates that model I 
agrees less with experiment than does model II. 
Accepting H 0 indicates that the models agree equally 
well with experiment. 

The procedure to test H o (4) versus H ,  (5) at the 
(approximate) ~t level of significance is as follows: 

reject H 6, if Q' > z~,~ 
accept H 0, if Q' < z~,), (19) 

where 
Q' = ~_~a / V '. (20) 

In the procedure, z~ ,  is the upper tail probability for 
the standard normal ~istribution.* Values of z~,,) are 
tabulated in standard texts [e.g. Appendix A of 
Hollander & Wolfe (1973)]. 

- 

Our procedure is a straightforward result of S (17) 
being an estimate of In (~' 2), which is zero under the null 

* If x is such that P(X > x) = rt, then z~,,} = x, where X has an 
N(0,1) distribution. Procedure (19) is based on the large N 
(asymptotic) distribution of Q'. 

hypothesis, and of V' (I 8) being the standard deviation 
of the estimate. Furthermore, as .  ~2 is also an estimate 
of ),2, the following relationship pertains: 

[exp (22~)] ~/2 ~_. ~.  (21) 

We have already pointed out that the jack-knife 
procedure tends to lessen bias in estimators. Accor- 
dingly, deviation from equality in (21) relates to the 
bias in Hamilton's .~2  statistic. (In crystallographic 
applications, we expect the bias to be small, as N is 
large.) 

3. Applications 

We have been particularly interested in the problem of 
making the correct atom assignment in crystal struc- 
tures. This is usually simple if the chemical structure is 
known or if the atoms have widely different form 
factors, but can be difficult if these conditions are not 
met. Ordinarily, the correct assignment is made by 
examining the thermal parameters of an atom which 
has been refined with different scattering factors applied 
to it (Stout & Jensen, 1968). Temperature factors 
which are thought to be abnormally high or low are 
assumed to indicate an incorrect assignment. A 
difference Fourier synthesis may also be helpful in 
revealing an incorrect assignment (Stout & Jensen, 
1968). However, both of these methods require intuitive 

judgements on the part of the crystallographer. We 
show in the following examples how the jack-knife test 
can be applied to decide the correct assignment on a 
statistical basis. 

One of our referees has pointed out how Hamilton's 
test can be applied to atom assignments. For example, 
in the case of CN discussed in § 1, one of the refine- 
ments is carried out with the atoms assigned as CN, the 
second with the atoms assigned as NC. The second 
refinement may be f o rmal l y  regarded as having an 
additional parameter: that is, the scattering factor for 
the first atom is ( 1 - - x ) f N  + Xfc,  and the scattering 
factor for the second atom is xf• + ( 1 - X ) f c .  
Although x = 0 for the assignment NC, the dimension 
of the hypothesis is now defined and is equal to unity. 
Values of ,~b,u-,, , , ,  have been tabulated (Hamilton, 
1965) and the st levels associated with Hamilton's  test 
and with the jack-knife can be compared. 

We have considered atom-assignment problems in 
three structures: (CH3)2Sn(NCS) 2 (Chow, 1970), 
W(acac)(CO)3(CsHTO ) (Laine, 1974), and 
Cu(HCO2)2[OC(NH2)21 (Yawney & Doedens, 1970). 
For the first and third, we carried out a series of refine- 
ments on the models of interest in order to generate the 
required (F  o -- Fc) data for the jack-knife test. Busing 
and Levy's O R F L S  was used for these refinements; the 
function minimized was ~ A z where A is defined in (10), 
and the weighting scheme described in the original 
paper was employed. In the case of W(acac)(CO)~- 
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(C5H70), the necessary (Fo - F,.) data for the two 
possible structural models were taken from Laine 
(1974). 

Example 1 

The structure of (CH3)2Sn(NCS) 2, originally solved 
by Chow (1970), provides a simple example of the 
application of the jack-knife test. We refined the 
structure as (CH3)2Sn(NCS)2 (model II in Table 1) and 
as the isomeric (CH3)2Sn(CNS)2 (model I in Table 1). 
The latter is known to be incorrect since the compound 
was synthesized from KNCS. Model I in fact had the 
higher R factor, and the thermal parameters for model I 
would have indicated the correctness of model II in the 
normal course of events. 

CH 3.~,. j N C S  
CH3/ ;~n~NCS 

CH3~ ~ C N S  
CH3JSn ' ~CNS 

Model II, R = 0.0641 Model I, R = 0.0665 
(the correct model) 

It is clear from Table I that both the jack-knife and 
Hamilton's tests indicate that the null hypothesis can be 
rejected and that model II is the better structure. The a 
level associated with Hamilton's test is <0.005; that 
with the jack-knife test is 0.05. The significance of, and 
reasons for, the difference in a values will be discussed 
later. The important point here is that the jack-knife test 
is capable of distinguishing an incorrect atom assign- 
ment in a test case where the answer is known. 

Example 2 

The reaction of 2,4-pentanedione (Hacac) with 
lW(CO)3(CH3CN)31 produced a compound which 
could be formulated either as W(acac)(CO)3(CsH70 ) 
(model II), containing a 2,4-pentanedione (Hacac) 
molecule which has lost an --OH group, or as W(acac)- 
(CO)3(C4HTN2) (model I), containing a dimerized 
acetonitrile grouping (Laine, 1974). The temperature 
factors of the suspect atoms were not sufficiently 
different for a distinction to be made between the two 
models, although model II has the low R factor (Laine, 

1974). The atom assignment was ultimately made on 
the basis of an elemental analysis; the compound 
contained no N, thus showing conclusively that model I 
was incorrect. 

~ H 3 CH3 
I 

/C~  :C,.  
acac(CO)3W "~C--H acac(CO)3W "~N 

O-=C\ / N = C \  

CH 3 H CH 3 

Model II, R = 0-0584 Model I, R = 0.0590 
(the correct model) 

The jack-knife Q' statistic (Table 1) is 2.00. The 
hypothesis that the two models describe the structure 
equally well can be rejected at a significance level of 
0.02; W(acac)(CO)3(CsHsO ) is statistically the better 
model. Hamilton's test also indicates that W(acac)- 
(CO)3(C5H50) is the better structure, at a significance 
level well below 0.005. 

Example 3 " 

The urea molecule in the structure of Cu(HCO2) 2- 
[OC(NH2)2I presented a problem to Yawney & 
Doedens (1970), as there are three ways to assign the 
N and O atoms" 

N(2) 0(5)  / / 
C u - O ( 5 ) - C ( 3 )  Cu-N(2) - (~(3)  

N( l )  N(1) 

Model (a) (the Model (b) 
correct structure) Rcu an~so. = 0. 1035 
Rcuaniso. = 0" 1030 Ra, aniso. = 0.0901 
Rail aniso. = 0-0887 

N(2) / 
C u - N ( I ) - C ( 3 )  

0(5) 

Model (c) 
Rcuaniso. = 0-1028 
Rallaniso" = 0.0897 

Table 1. Summary of  the results of  the jack-knife test and the R-ratio test for  some atom-assignment problems 

Hamilton's test Jack-knife test 

Structure Model I Model II rn N 

(CH3)2Sn(NCS) 2 (CH3)2Sn(CNS) 2 (CH3)2Sn(NCS)2* 20 147 
W(acac)(CO)3(CsHTO) W(acac)(CO)3(C4HTN 2) W(acac)(CO)3(CsHTO)* 86 1911 
Cu(HCO2)2(urea); Structure (b) Structure (a)* 50 616 

only Cu anisotropic Structure (a)* Structure (c) 50 616 

Cu(HCO2)2(urea); Structure (b) Structure (a)* 100 616 
all atoms anisotropic Structure (c) Structure (a)* 100 616 

* The correct structure. 
t Unweighted .'.¢ factor as the weighting scheme was unavailable to us. 

.';¢ a (exp ~)1,2 V' 

1.037 <0.005 1-037 0.045 
1.010af <0.005 1-0105 0.005 
1.005 0"02 1.004 0.023 
1.002 0" 10 1-002 0"022 

1"016 <0"005 1.016 0"031 
1"012 <0.005 1.011 0"028 

:I: exp(".~) as the unweighted ~ factor is used instead of.')~ 2 in equation (16) of the text. 

Q' 

1.63 0.05 
2.00 0.02 
0.40 0.34 
0.17 0.43 

1.02 0.15 
0.79 0.21 
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With only the Cu atom anisotropic, the lowest R factor 
was obtained for structure (c), and the Hamilton R- 
ratio test suggested that structure (c) is preferred over 
structure (a) at the 0.10 significance level. As a 
contrast, the jack-knife test indicates that it is not 
statistically possible to distinguish between these three 
structures: the st levels of 0.34 and 0.43 mean that the 
null hypothesis cannot be rejected. 

As the thermal parameters, as well as knowledge of 
the usual binding modes of urea, suggested that 
structure (a) was correct, we decided to go a stage 
further in the refinement of Cu(HCO2)2[OC(NH2) 2] 
and treat all atoms anisotropically. The change in the R 
factors upon going from Cu anisotropic to all atoms 
anisotropic was significant beyond the ct = 0.005 level 
according to Hamilton's (1965) test. The anisotropic 
thermal parameters of the atom labeled 0(5)  in 
structures (b) and (e) refined to nonpositive-definite 
values, suggesting the correctness of structure (a); 
furthermore, structure (a) now exhibited the lowest R 
factor. 

Although the R-ratio test suggests that very high 
confidence can now be associated with the choice of 
structure (a), the jack-knife test is much less optimistic. 
The null hypothesis for the jack-knife test can only be 
rejected at a significance level of 0.15 in one case and 
0.21 in the other. 

Yawney & Doedens (1970) surmised that the data 
were insufficiently accurate to permit an unequivocal 
choice between the three possible structures, a con- 
clusion supported by the present statistical work. 

4. Discussion 

factor differences. (Monte Carlo calculations which are 
in progress show that the jack-knife test is robust for a 
wide range of distributions, including a Cauchy- 
contaminated normal.) 

The jack-knife test may give fewer false indications 
of significant differences between models. In the 
examples we have considered (Table 1) the significance 
levels for the jack-knife test are consistently larger than 
those for the Hamilton R-ratio test. In particular, in the 
case of CH(HCO2) 2. urea, only Cu anisotropic, the R- 
ratio test selects the 'wrong' structure (e) but the jack- 
knife indicates that the three structural models fit the 
data equally well and does not suggest the choice of an 
incorrect structure. We believe that the more conserva- 
tive jack-knife test is to be preferred. 

The jack-knife test should also be applicable to the 
determination of the correct absolute configuration of a 
chiral molecule, since the same set of parameters is 
refined in each of the two possible coordinate systems.* 
However, it must be mentioned that there are several 
types of crystallographic problems which should not be 
treated by the jack-knife test: these include the problem 
of whether anisotropic thermal parameters are better 
than isotropic ones, the choice of correct space group 
when the systematic absences do not uniquely deter- 
mine the group, and so on. These cases are ones in 
which different sets of parameters are used to describe 
the various structural models. It is obvious that the 
variance of a given distribution can always be lowered 
by introducing additional parameters to describe the 
structure. The applicability of the jack-knife test rests 
on the ability to cast a crystallographic problem into 
such a form that the possible structural models are 
described by the same set of parameters. 

The significance level associated with an application of 
a given statistical test is the probability under the null 
hypothesis that an outcome might have occurred which 
is more extreme than the actual outcome. The true 
significance level is always unknown in practice, since 
the experimenter cannot be certain that the natural 
variation is accurately reflected in the probabilistic 
model upon which the statistical test is based. However, 
in a given application of a test the theoretical (nominal) 
significance level ought to approximate the actual signi- 
ficance level, and this performance can obtain if the test 
does not depend too strongly on the fidelity with which 
the theoretical paradigm mimics the natural system. 

The R-factor ratio is based upon linearity 
assumptions embodied in (1) and (2) in addition to 
somewhat strong assumptions concerning the distri- 
bution on e in (1). There is considerable evidence 
indicating that tests based on the latter assumption in 
the manner of the R-ratio tests are not as robust as 
those derived using the jack-knife (Miller, 1968). The 
jack-knife test described here depends upon fairly weak 
assumptions concerning distributions on the structure 

Note added in proof" We have also suggested a pro- 
cedure (submitted to J. Am. Chem. Soc.) based on 
Kendall's test of independence as another nonpara- 
metric alternative to Hamilton's test. 

There were helpful discussions with Professors R. 
Bau, J. M. Miller and J. P. Mayberry. We also thank 
Professor R. Bau for making Dr Laine's data available 
to us prior to its publication. 

One of us carried out this work, in part, during his 
sabbatical leave in the laboratories of Professors P.-O. 
L6wdin and H. S. Taylor. Their hospitality is gratefully 
acknowledged. 
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National Research Council (Canada). 

* Copies of the jack-knife computer program are available from 
the authors upon request. 

References 

ARVESON, J. N. & SCHMITZ, T. H. (1970). Biometrics, 26, 
677-686. 



974 AN A L T E R N A T I V E  TO H A M I L T O N ' S  R - F A C T O R  RATIO TEST 

CHOW, Y. M. (1970). lnorg. Chem. 9, 794-796. 
DURBIN, J. (1959). Biometrika, 46, 477-480. 
HAMILTON, W. C. (1964). Statistics in Physical Science. 

Estimation, Hypothesis Testing, and Least Squares. New 
York: Roland Press. 

HAMILTON, W. C. (1965). Acta Cryst. 18, 502-510. 
HOLLANDER, M. & WOLFE, D. A. (1973). Nonparametric 

Statistical Methods. New York: John Wiley. 
LAINE, R. M. (1974). Chemical and Structural Studies on 

Tungsten Carbonyl Complexes and Related Compounds. 
Thesis, Univ. of Southern California. 

MILLER, R. G. (1964). Ann. Math. Stat. 35, 1594-1605. 

MILLER, R. G. (1968). Ann. Math. Stat. 39, 567-582. 
MILLER, R. G. (1974a). Biometrika, 61, 1-15. 
MILLER, R. G. (1974b).Ann. Stat. 2, 880-891. 
QUENOUILLE, M. H. (1949). J. R. Stat. Soc. B, II, 68-84. 
QUENOUILLE, M. H. (1956). Biometrika, 43, 353-360. 
STOUT, G. H. & JENSEN, L. H. (1968). X-ray Structure 

Determination: A Practical Guide. New York: Macmillan. 
TUKEY, J. W. (1958). Ann. Math. Stat. 29, 614. 
VACCA, A. & KENNARD, C. H. L. (1977). Acta Cryst. B33, 

3271. 
YAWNEY, D. I .  W. & DOEDENS, R. J. (1970). Inorg. Chem. 

9, 1626-1632. 

Acta Cryst. (1978). A34, 974-979 

Electrostatic Lattice Energy in Ionic Crystals: 
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Ewald's method is reconsidered to express the dependence of Madelung energy on the ionic charges explicitly, 
also taking into account the space-group symmetry of the structure. Upper bounds for the residues of the two 
partial series have been calculated by integral approximation; that relative to the direct-lattice series is shown 
to depend on the cube root of the unit-cell volume. The optimum value of the parameter A, which equalizes 
the rates of convergence of the two sums and minimizes the total number of terms, has been determined 
numerically for a given termination error and for a range of unit-cell dimensions. Theoretical results are tested 
by calculations on some specific crystal structures. 

Introduction 

In recent years, a new interest has arisen in calculations 
of cohesion energy in ionic or partially ionic* crystals 
according to the simple Born model (ToNi, 1964): the 
energy is divided into a dominant  (Coulombic) term, 
which can be computed exactly, and two secondary 
(repulsive and dispersive) terms which require a semi- 
empirical parametrization. However, the modern 
approach seems to aim at a quantitative interpretation 
of the crystal chemistry of complicated structures, 
which are important in mineralogy or in solid-state 
technology, rather than at an accurate ab initio 
calculation of physical properties of crystals with very 
simple structures, as in earlier times. In this respect, 
maximum computing efficiency of the time-consuming 
electrostatic term of the energy should be even more 
important than an accurate parametrization of the 
other two terms; this holds particularly if the energy is 

* A 'partially ionic' crystal is meant here to contain both 
prevalently ionic and prevalently covalent bonds, and not bonds all 
having an intermediate character between ionic and covalent. 

to be minimized by letting the atomic positions change, 
since the amount of computation then required may 
rise strikingly (Baur, 1965; Ladd, 1968; Giese & Datta, 
1973). 

The Coulombic formula for the electrostatic (or 
Madelung) lattice energy of a unit cell is: 
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where e is the electron charge, N is the number of ions 
in the cell, z i is an ionic charge referred to the electron 
charge, x/i = x i - xj is an interatomic vector between 
ions contained in the cell, and I is a vector of the direct 
lattice. This straightforward calculation is not very 
convenient, as the Coulombic potential decreases 
slowly for large distances. However, the convergence of 
( l )  may be improved by suitably ordering the terms in 
the sum (Evjen, 1932): a computer program has been 
based on this method (Boeyens & Gafner, 1969), but it 
can handle only centrosymmetric structures. In his 
classic paper, Bertaut (1952) showed that expression 


